
International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 576
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Simulation Design of a Backpropagation
Neural System of Sensor Network Trained by

Particle Swarm Optimization

Prof. Dr. Hanan A. R. Akkar, Assist. Prof. Dr. Aied K. AL-Samarrie, Azzad B. Saeed

Abstract— The sensor network consists of two main units, they are: the sensor unit and the artificial intelligent system. The sensor unit is
used for converting the output analog signal of the sensor to binary data, while the artificial intelligent system is used for processing these
binary data and presenting a final decision. In this paper, a Backpropagation Neural Network is designed and simulated, which is a
powerful artificial intelligent system, and it can be trained by an optimization method for updating the weights and biases of the hidden and
output layers. Satlins and Satlin functions had been used as linear activation functions for the hidden and output layers. Trainpso function
had been used as a training function for the proposed system, which is a particle swarm optimization method of training. It is worth to
mention, that no previous research used these three functions together for such analysis. This system had been simulated and tested
using MATLAB software package, the testing process had offered stimulant results, and the actual output data had fitted the desired
output data, while the Mean Square Error had reached to zero with 56 iterations for getting best value of solution, where, no previous
research had reached to this optimal result for such design.

Index Terms— Artificial Intelligent (AI), Backpropagation, Mean Square Error (MSE), Particle Swarm Optimization (PSO),
MATLAB, Sensor Network(SN), Trainpso.

—————————— ——————————

1 INTRODUCTION
 HE Backpropagation Neural Network is one of the
 effective artificial intelligent systems used in the
 sensor networks today[1].
 It is a common method of training artificial neural
networks used in conjunction with an optimization method
such as gradient descent. The method calculates the
gradient of a loss function with respect to all the weights in
the network. The gradient is fed to the optimization method
which in turn uses it to update the weights, in an attempt to
minimize the loss function[2].
 Backpropagation requires a known, desired output for
each input value in order to calculate the loss function
gradient. It is therefore, usually considered to be a method.
It is a generalization of the delta rule to multi-layered feed
forward networks, made possible by using the chain rule to
iteratively compute gradients for each layer.
Backpropagation requires that the activation function used
by the artificial neurons or (nodes) be differentiable[3].

 By applying of the backpropagation algorithm, every
iteration of training follows these steps: 1) a specific case of
training data must be entered through the network in a
forward direction, presenting results at the output layer, 2)
the error values must be calculated at the output nodes
based on known desired output data, and the essential
changes to the input connection weights of the output layer
can be determined based on this error values, 3) the
variation of the input connection weights of the preceding
network layers can be determined as a function of the
properties of the neurons to which they directly connect
(connection weight changes can be calculated, layer by
layer, as a function of the errors achieved for all
subsequent layers, applying backward to the direction of
the input layer) until all essential weight changes are
calculated completely for the overall network[4].
 The calculated weight changes are then performed
throughout the entire network, the new iteration starts,
and the overall procedure is repeated again using the next
training pattern data. For a neural network with hidden
layers, the backpropagation algorithm can be given by the
three Equations (1),(2),(3), where i is the emitter layer of
nodes, j is the receiver layer of nodes, k is the layer of nodes
that follows j layer, ij is the layer of weights between node
layers i and j, jk is the layer of weights between node layers
j and k, weights are represented by(W), node activation
functions are represented by (a), delta values for nodes are
represented by (δ), and (ε) is the learning rate[5]:

 𝛥𝑊𝑖𝑗𝑚 = 𝜀𝛿𝑗𝑝𝑟𝑖𝑞 (1)

T

————————————————

• Hanan A. R. Akkar is currently Professor has Ph.D degree in electronic
 engineering in University of Technology, Iraq.

• Aied K. AL-Samarrie is currently Assist. Professor has Ph.D degree in
communication engineering in University of Technology, Iraq.

• Azzad B. Saeed is currently Lecturer has Msc. degree in electronic
engineering in University of Technology, Iraq.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 577
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

 𝛿𝑗𝑝 = 𝑟𝑗𝑝 (1− 𝑟𝑗𝑝)(𝑉𝑗𝑝 − 𝑟𝑗𝑝) (2)

This equation used for the output nodes.

 𝛿𝑗𝑝 = 𝑟𝑗𝑝 � 1− 𝑟𝑗𝑝 �∑ 𝛿𝑘𝑥𝑤𝑗𝑘𝑥𝑛

𝑥=0 (3)

This equation used for the hidden nodes.

 Equation (1) says that the change in a specific weight (m)
stayed between layers i and j is equated to the production
of: 1) the learning rate (ε); 2) the delta value for node p in
layer j; and 3) the activation function (a) of node q in layer i.
Practically, the learning rate (ε) is typically proposed a
range 0≤ε≤0.1; higher values may produce faster
convergence on a solution, and may also increase the
instability and may lead to a failure to converge. The delta
value(δ jp) for node p in layer j in Equation (1) can be given
either by Equation (2) or by Equation (3), according to
whether or not the node is in an output or hidden layer[5].
 Equation (2) determines the delta value (δjp) for node p
of layer j if node p is an output node, with the
understanding that a sigma activation function is used here
as a non-linear activation function. Equation (3) determines
the delta value (δjp) for node p of layer j if node p is a hidden
node. This equation states that the delta value of a specific
node of interest is a function of: 1) the activation function at
the same node, 2) the sum of the products of the delta
values of relevant nodes in the succedent layer with the
connections weights associated with the vectors that
connect the nodes[5].

2 PARTICLE SWARM OPTIMIZATION (PSO)
 In 1995, Dr. Eberhart and Dr. Kennedy had developed
Particle Swarm Optimization (PSO), which is a population
based stochastic optimization technique inspired by social
behavior of fish schooling or bird flocking[6].
 PSO had shared many analogies with evolutionary
computation techniques such as Genetic Algorithms (GA).
The system is started with a population of random
solutions and searches for optima by generations updating.
However, unlike GA, PSO does not have evolution
operators such as crossover and mutation. In PSO, the
particles (which is the potential solutions) fly through the
problem zone by following the current optimum particles.
 The advantages of PSO compared to GA, are that:1) PSO
is easy for implementing and there are few parameters
must be adjusted.2) PSO had been successfully applied in
many areas, such as in function optimization, artificial
neural network training, fuzzy system controlling, and
other areas where GA can be applied[7].
 PSO is learned from the scenario, which had used it to
solve the optimization problems. In PSO, a (bird) represents
each single solution in the search zone, which called
(particle). All the particles have fitness values which had
been evaluated by the fitness function to be optimized, and
they have velocities used to direct the particles flying. The
particles fly through the problem zone by following the
current optimum particles[7].

 PSO is began with a group of random particles
(solutions) and then searches for optima by generations
updating. For each iteration, every particle is updated by
following dual (best) values. The first is the best solution
(fitness) it has achieved so far. (The fitness value is also
stored.) This value is called pbest. The second (best) value
that is tracked by the particle swarm optimizer is the best
value, obtained so far by any particle in the population.
This best value is a global best and called gbest. When a
particle takes part of the population as its topological
neighbors, the best value is a local best and is called lbest[8].
 After finding the two best values, the particle updates its
velocity and positions with following Equations (4) and
(5)[9].

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑉) = 𝑤.𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑉 − 1) + 𝑉1. 𝑟𝑟𝑟𝑟1�𝑝𝑝𝑉𝑝𝑉𝑉(𝑉)� −
𝑝𝑉𝑝𝑉𝑉𝑉𝑉𝑟𝑉(𝑉 − 1) + 𝑉2. 𝑟𝑟𝑟𝑟2�𝑔𝑝𝑉𝑝𝑉𝑉 − 𝑝𝑉𝑝𝑉𝑉𝑉𝑉𝑟𝑉(𝑉 − 1)� (4)

𝑃𝑉𝑝𝑉𝑉𝑉𝑉𝑟𝑉(𝑉) = 𝑝𝑉𝑝𝑉𝑉𝑉𝑉𝑟𝑉(𝑉 − 1) + 𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑉) (5)

 Where w represents the inertia weight, c1 and c2
represent acceleration constants, where, c1 = c2 = 2 , and r
represents a random function in the range [0, 1]. For
equation (4), the first part corresponds the inertia of
pervious velocity; the second part is the “cognition” part,
which corresponds the private thinking by itself; the third
part is the “social” part, which corresponds the cooperation
among the particles. pbesti is the personal best position has
been recorded by particle i, while gbesti is the global best
position has been obtained by any particle in the
population.
 PSO process is briefly explained in the following steps:
1)For each particle, Initialize particle.
2)For each particle, Calculate fitness value, then, If the
fitness value is better than the best fitness value (pbest) set
current value as the new pbest.
3) Choose the particle with the best fitness value of all the
particles as the gbest, then for each particle: a) Calculate
particle velocity according Equation (4). b) Update particle
position according Equation (5).
 While maximum iterations or minimum error criteria or
maximum iterations isn’t achieved Particles' velocities for
every dimension are clamped to a maximum velocity Vmax.
If the sum of accelerations causes the velocity of that
dimension to exceed Vmax (which is a parameter specified
by the user), Then the velocity of that dimension is limited
to Vmax[9].

3 RELATED WORKS
 There are several previous works had applied the
Particle Swarm Optimization (PSO) algorithm in the sensor
network applications, where, they had used this algorithm
for solving network routing problems or addressing
Wireless Sensor Network issues such as optimal
deployment, node localization, clustering and data-
aggregation. But the proposed work had differed from all
previous works by using the PSO algorithm as a training
method for updating the weights connections and biases of

IJSER

http://www.ijser.org/
http://www.engr.iupui.edu/~eberhart
http://www.particleswarm.net/JK/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 578
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

the proposed neural network (the intelligent system) of
the sensor network for reaching to zero mean square error,
which is optimal result.
 Te-Jen, Ming-Yuan, and Yuei-Jyne[10] had proposed a
control of the coverage problem optimization via the
adaptive particle swarm optimization (APSO) approach.
The proper selection of inertia weight of APSO gives
balance between global and local searching, and they had
showed that the larger weight helps to increase
convergence speed while the smaller one benefits
convergence accuracy, decreasing the algorithm operation
times.
 K. kavitha and M. Mohamed[11] had used particle
swarm optimization (PSO), a metaheuristic algorithm to
perform the process of routing. Since PSO does not have a
defined fitness function, they incorporate user defined QoS
parameters to define the fitness function.
 Haiping, Junqing, Ruchuan, and yishing[12] had
proposed algorithm combines the ionic bond method with
particle swarm optimization (PSO), where ionic bond
method uses a judicious ionic bond between two sensor
nodes of sensor network to determine which node needs to
move and also the path and direction of the movement and
PSO suitable for solving multi-dimension function
optimization in continuous space.

4 SIMULATION DESIGN OF THE PROPOSED SYSTEM
 The proposed system used in this design, was a back
propagation neural network, its design and simulation had
been realized using MATLAB package with the following
considerations, the sensor network consists of two sensor
units, each sensor unit has two bits of binary output data,
which driven to the input lines of the proposed system, so
the proposed system must have four input lines. The
output of the sensor unit has three binary states, the first is
the binary data (01) represents the (LOW) state, the second
binary data is (10) represents the (MEDIUM) state, and the
third binary data is (11) represents the (HIGH) state.
 The output of the proposed system has three logic lines,
one can choose three possible states for the desired output
data of this system, the first desired output data is (001),
which represents the (LOW) state, the second desired
output data is (010), which represents the (MEDIUM) state,
and the third desired output data is (100), which
represents the (HIGH) state. One can conclude from these
considerations that the proposed simulation system has
four logic input lines and three logic output lines.
 The desired output data of the proposed system, must
be equated to the average of the input data introduced by
the sensor units according to the Table (1), for example, if
the input data introduced by sensor unit (1) is (01) (LOW)
state, and the input data introduced by sensor unit (2) is
(01) (LOW) state too, then the proposed system will
produce an output data (001) (LOW) state as shown in
Table (1), and so on.

 The input layer of the proposed system must have four
neurons, because it has four input lines, and the output
layer must have three neurons, because it has three output
lines, and the hidden layer must have ten neurons for
obtaining accurate results. Linear activation functions had
been chosen for the hidden and output layers as shown in
Figure (1) , Satlins activation function for the hidden layer,
and Satlin activation function for the output layer. The
MATLAB function (Trainpso) had been chosen as a learning
function for the proposed system, it means particle swarm
optimization learning function, used for updating the
weights and biases of the hidden and output layers, which
is a very fast training method.

 Particle swarm optimization had been used a learning
method for updating the weights and biases of the back
propagation neural network of the proposed system, which
it had designed and simulated with the following
considerations:

1. Each particle has {(4×10)+(10×3)}=70 values of total
network weights.

2. Population size = 25 particles.
3. Maximum no. iteration = 2000.
4. Minimum error gradient = 1×10-9.
5. Initial total weights in the range = (0.4,0.9).

TABLE 1
THE RELATION BETWEEN INPUT AND DESIRED OUTPUT DATA

 Fig. 1. Some of linear activation functions[13]:

a- Satlin function.
b- Satlins function.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 579
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

6. Searching range for input weights of hidden layer
= (-100,100).

7. Searching rang for input weights of output layer =
(-100,100).

8. Searching range for bias = (-8,8).

 Finally, The previous considerations had helped the
programmer to write an appropriate MATLAB software
using back propagation neural instructions. This software
had been finished by the instruction {gensim(net)} to
generate the proposed system block. After generation of
this block, the input ports and a multiplexer had been
connected to the input line of the system, while, the output
ports and a demultiplexer had been connected to the
output line of the same system. The using of input and
output ports had made the connection of the proposed
system to external devices easier. The flowchart of training
the proposed system had realized as shown in Figure (2).
From this figure, one can see that input training data must
be entered firstly, and then the desired output data. The
activation and training functions must be entered, then the
learning rate and maximum no. epochs must be set. Finally,
the training must be applied to the proposed system for
getting the actual output.

5 SIMULATION DESIGN OF THE PROPOSED SYSTEM
 The proposed system used in this design, was a back
propagation neural network, its design and simulation had
been realized using MATLAB package with the following

considerations, the sensor network consists of two sensor
units, each sensor unit has two bits of binary output data,
which driven to the input lines of the proposed system, so
the proposed system must have four input lines. The
output of the sensor unit has three binary states, the first is
the binary data (01) represents the (LOW) state, the second
binary data is (10) represents the (MEDIUM) state, and the
third binary data is (11) represents the (HIGH) state.
 The output of the proposed system has three logic lines,
one can choose three possible states for the desired output
data of this system, the first desired output data is (001),
which represents the (LOW) state, the second desired
output data is (010), which represents the (MEDIUM) state,
and the third desired output data is (100), which
represents the (HIGH) state. One can conclude from these
considerations that the proposed simulation system has
four logic input lines and three logic output lines.
 The desired output data of the proposed system, must
be equated to the average of the input data introduced by
the sensor units according to the Table (1), for example, if
the input data introduced by sensor unit (1) is (01) (LOW)
state, and the input data introduced by sensor unit (2) is
(01) (LOW) state too, then the proposed system will
produce an output data (001) (LOW) state as shown in
Table (1), and so on.
 The input layer of the proposed system must have four
neurons, because it has four input lines, and the output
layer must have three neurons, because it has three output
lines, and the hidden layer must have ten neurons for
obtaining accurate results. Linear activation functions had
been chosen for the hidden and output layers as shown in
Figure (1) , Satlins activation function for the hidden layer,
and Satlin activation function for the output layer. The
MATLAB function (Trainpso) had been chosen as a learning
function for the proposed system, it means particle swarm
optimization learning function, used for updating the
weights and biases of the hidden and output layers, which
is a very fast training method.
 Particle swarm optimization had been used a learning
method for updating the weights and biases of the back
propagation neural network of the proposed system, which
it had designed and simulated with the following
considerations:

1. Each particle has {(4×10)+(10×3)}=70 values of total
network weights.

2. Population size = 25 particles.
3. Maximum no. iteration = 2000.
4. Minimum error gradient = 1×10-9.
5. Initial total weights in the range = (0.4,0.9).
6. Searching range for input weights of hidden layer

= (-100,100).
7. Searching rang for input weights of output layer =

(-100,100).
8. Searching range for bias = (-8,8).

 Finally, The previous considerations had helped the
programmer to write an appropriate MATLAB software
using back propagation neural instructions. This software

 Fig. 2. Flowchart of training the proposed system.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 580
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

had been finished by the instruction {gensim(net)} to
generate the proposed system block. After generation of
this block, the input ports and a multiplexer had been
connected to the input line of the system, while, the output
ports and a demultiplexer had been connected to the
output line of the same system. The using of input and
output ports had made the connection of the proposed
system to external devices easier. The flowchart of training
the proposed system had realized as shown in Figure (2).
From this figure, one can see that input training data must
be entered firstly, and then the desired output data. The
activation and training functions must be entered, then the
learning rate and maximum no. epochs must be set. Finally,
the training must be applied to the proposed system for
getting the actual output.

6 RESULTS AND DISCUSSION
 After executing the proposed MATLAB software, a
simulation system block will be generated, this block has
four input and three output lines, the input lines must be
connected to the input ports, and the output lines must be
connected to output ports, the data type of the input and
output ports must be converted to the Boolean type. A
multiplexer must be connected between the input ports and
the input of the simulation system block, and a
demultiplexer must be connected between the output of the
simulation system block and the output ports.
 After opening the system block, a system network will
be exhibited as shown in Figure (3), this network
constructed from two layer blocks, these are : layer (1) and
layer (2) blocks. Layer (1) block represents the input layer
and the hidden layer, while layer (2) block represents the
output layer.

 After opening the layer (1) block, a system network will
be exhibited, which constructed from: delays(1),weight,
bias, summation, and activation function blocks, the
activation function of this layer is Satlins function. After
opening the weight block of the this layer, a system
network will be exhibited as shown in Figure (4), this
network represents the hidden layer, which constructed
from ten neurons with their updated weights.

 After opening the layer (2) block, a system block will be
exhibited, which constructed from: delays(1), weight,
bias , summation, and activation function blocks, the
activation function of this layer is Satlin function, and after
opening the weight block of this layer, a system network
will be exhibited as shown in Figure (5), which constructed
from three neurons of the output layer with their updated
weights.

 The data type of the overall simulation block must be
converted from (double) data type to fixed data (fixdt)
type, and the data type converter blocks must be connected
at the inputs and outputs of the this system, whereas, a
data type converter must be connected between the input
ports and the input of the simulation system block, which
converts the Boolean data type of the input ports to the
fixed data (fixdt) type of the simulation system block,
while, another data type converter must be connected
between the output of the simulation system block and the
output ports, which converts the fixed data (fixdt) type of
the simulation system block to the Boolean data type of the
output ports.
 The software program had been executed to present
two result windows as shown in Figures (6) & (7), the first
one shows two graphs, the left graph represents the
connection diagram of the proposed back propagation
neural network, there are four neurons at the input layer,
ten neurons at the hidden layer, three neurons at the output
layer, and 70 connections among them. The right graph
shows the relation between the mean square errors versus
no. iterations, as shown, the relation line non-linearly failed
to (zero) value with 48 iteration, i.e. the complete learning

 Fig. 3. Internal network of the proposed system block.

 Fig. 4. Internal network of weight block of layer(1) block.

 Fig. 5. Internal network of Weight block of layer(2) block.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 581
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

had been achieved to get best value of solution with zero
mean square error at iteration (49). The input weights of
the hidden layer was at range (-97.6639, 100), and the input
weights of the output layer was at range (-100,100), while
the biases was at range (-6.9776, 4.5696).

 Figure (7) shows the result of another training of the
proposed network (or another executing the software
program of the proposed system). There are two graphs in

this figure, the left one represents the relation between
Mean Square Error versus no. iteration, as shown, the
relation line of this graph had reached to (zero) value at
iteration 56 for getting the best value of solution. The right
graph of this figure represents the tree type (2) PSO model,
which shows the accumulation of the particles around the
intersection of the red sporadic lines. This center
represents the best solution of the problem, whereas, these
particles stayed in the center of these lines at the end of the

best learning process.

7 CONCLUSIONS
 For increasing the sensor units of the proposed system,
the input lines of the system will increase too, which leads
to increasing the neurons of the input layer, and this
process makes the proposed system more complex, and
increases the size of the simulation software.
 Practically, only the linear activation functions must be
used for the hidden and output layers of the proposed
network, whereas, the non-linear activation functions
cannot be used with the proposed system, because the
MATLAB package cannot convert this system to VHDL
code program, and then it cannot be downloaded into an
FPGA .
 One can proposes more output levels at the output
layer for increasing the accuracy of the output results, but
this process leads to increase the neurons of the output
layer, which makes the simulation system more complex,
and enlarges the size of the system software.
 Increasing the hidden layers, or decreasing the neurons
of the single hidden layer of the proposed system, leads
to decreasing the accuracy of the results.

REFERENCES

[1] Subhas C. M., Henry L.,” ADVANCED IN WIRELESS SENSORS
 AND SENSOR NETWORKS”, Springer- Verlog Berlin Heidelberg,
 2010.
[2] F. Acer Saraci, ” ARTIFICIAL INTELLIGENCE AND NEURAL
 NETWOKS”, Springer-Verlag Berlin Heidelberg, 2006.
[3] Vemuri V. R.,” ARTIFICIAL NEURAL NETWORK: Concepts
 and Control Applications”, IEEE Computer Society Press, 1995.
[4] Bishop C. M.,” NEURAL NETWORKS FOR PATTERN
 RECOGNITION”, Oxford University, New York, 1995.
[5] David L.,”A BASIC INTRODUCTION TO FEEDFORWARD
 BACKPROPAGATION NEURAL NETWORKS”, David
 Levering, 2009.
[6] JunS., Choi-HongL., Xiao-Jun W.,” PARTICAL SWARM
 OPTIMIZATION: Classical and Quantum Perspectives”, Taylor
 &Francis, LCC,2012.
[7] Maurice Clerc,” PARTICAL SWARM OPTIMIZATION”, ISTE
Ltd.,
 2006.
[8] Li-Yeh C.,Yu-da Lin, Cheng-Hong Y.,” AN IMPROVED
 PARTICLE SWARM OPTIMIZATION FOR DATA
 CLUSTERING”, International Multi conference of Engineers
 and Computer Scientists, Vol.1,2012.
 https://www.iaeng.org/publication/IMECS 2012-pp 440-445.pdf.
[9] Maria G. A., Pierre D.,” PARTICAL SWARM OPTIMIZATION
 (PSO): An Alternative Method for Composite
 Optimization”, 10th World Congress on Structural and
 Multidisciplinary Optimization, 2013.
 https://www2.mae.nfl.edu/mdo/papers/5334.pdf.
[10] Te-Jen S., Ming-Yuan H., Yuei-Jyun S.,” N ADAPTIVE PARTICLE
 SWARM OPTIMIZATION FOR THE COVERAGE OF
 WIRELESS SENSO R NETWORK”, Springer-Verlag Berlin

Fig. 6. The result window of executing the proposed software
 program.

Fig. 7. Another result window shows the accumulation of the
 particles.

IJSER

http://www.ijser.org/
https://www.iaeng.org/publication/IMECS%202012-pp%20440-445.pdf
https://www2.mae.nfl.edu/mdo/papers/5334.pdf

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 582
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

 Heidelberg, 2011.
 https://www.mfile.narotama.ac.id.com.
[11] K. Kavitha, M. Mohamed S.,” PARTICLE SWARM
 OPTIMIZATION BASED QoS AWARE ROUTING FOR
 WIRELESS SENSOR NETWORKS”, International Journal
 for Scientific research & Development, Vol.2, Issue 07, 2014.
 https://www.ijsrd.com.
[12] Haiping H., Junqing Z., Ruchuan W., Yishing Q.,” SENSOR
 NODE DEPLOYMENT IN WIRELESS SENSOR NETWORKS
 BASED ON IONIC BOND-DIRECTED PARTICLE SWARM
 OPTIMIZATION”, Natural Sciences Publishing Cor., 2014.
 https://www.naturalpublishing.com.
[13] Mark H.B., Martin T. H., Haward B. D.,” NEURAL NETWORK
 TOOLBOX: User Guide”, The Math Works Inc, 2014.

IJSER

http://www.ijser.org/
https://www.mfile.narotama.ac.id.com/
https://www.ijsrd.com/
https://www.naturalpublishing.com/

	1 Introduction
	Equation (2) determines the delta value (δjp) for node p of layer j if node p is an output node, with the understanding that a sigma activation function is used here as a non-linear activation function. Equation (3) determines the delta value (...

	T
	2 Particle Swarm Optimization (PSO)
	3 Related Works
	4 Simulation Design of the Proposed System
	TABLE 1
	The Relation Between Input and Desired Output Data
	5 Simulation Design of the Proposed System
	6 Results and Discussion
	7 Conclusions
	References

